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Abstract

The fundamental units of olfactory perception are discrete 3D structures of volatile chemicals that 
each interact with specific subsets of a very large family of hundreds of odorant receptor proteins, 
in turn activating complex neural circuitry and posing a challenge to understand. We have applied 
computational approaches to analyze olfactory perceptual space from the perspective of odorant 
chemical features. We identify physicochemical features associated with ~150 different perceptual 
descriptors and develop machine-learning models. Validation of predictions shows a high success 
rate for test set chemicals within a study, as well as across studies more than 30 years apart in 
time. Due to the high success rates, we are able to map ~150 percepts onto a chemical space of 
nearly 0.5 million compounds, predicting numerous percept–structure combinations. The chemical 
structure-to-percept prediction provides a system-level view of human olfaction and opens the 
door for comprehensive computational discovery of fragrances and flavors.
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Introduction

Human perceptual descriptions for olfactory stimuli are less stereo-
typic than for vision or auditory stimuli where perception can be pre-
dicted by clearly defined properties such as wave frequency. In fact, 
olfactory perception may vary without an apparent relationship to 
the physicochemical properties of an odorant nor the molecular and 
cellular organization of the olfactory system (Buck and Axel 1991; 
Vassar et al. 1993; Mombaerts et al. 1996; Mombaerts 1999, 2001). 
Yet general neuroanatomical olfactory pathways are well conserved 
across species and the olfactory capabilities of humans appear to 
be close to that of species that rely heavily on olfaction for survival 
and mating (McGann 2017). Genetic variation in olfactory receptors 
also explains a significant amount of variability in basic perceptual 
qualities like intensity as well as more complex perceptual qualities 
(McRae et  al. 2012; Mainland et  al. 2014; Trimmer et  al. 2019). 
Although culture and language also affect olfactory perception (Majid 
and Kruspe 2018), individuals often show significant similarities in 

perceptual descriptions for the same chemical (Dravnieks 1985; Keller 
and Vosshall 2016), implying an underlying physicochemical basis for 
human olfactory perception. In fact, predicting percepts from physico-
chemical features is becoming increasingly plausible (Khan et al. 2007; 
Haddad et al. 2010; Snitz et al. 2013; Nozaki and Nakamoto 2016; 
Keller et  al. 2017; Kepple and Koulakov 2017; Licon et  al. 2019). 
However, the breadth and complexity of the human olfactory percep-
tual space and its physicochemical correlates remain poorly under-
stood except for a select few (<10) perceptual descriptors (Keller et al. 
2017). Moreover, because of the comparatively limited repertoire of 
olfactory receptors that have been functionally deorphanized (Saito 
et al. 2004; Keller et al. 2007; Mainland et al. 2014; Shirasu et al. 
2014; de March et al. 2020; Hu et al. 2020; McClintock, Khan, et al. 
2020; McClintock, Wang, et al. 2020; Pfister et al. 2020), predictive 
models with receptors are presently not as comprehensive in mapping 
to different perceptual qualities. There is subsequently an important 
role for computational modeling.
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Previous attempts to predict ratings of odor perception from 
the physiochemical features of molecules have been successful to 
some degree, although these examples represent a small fraction 
of the perceptual descriptor space (Khan et al. 2007; Nozaki and 
Nakamoto 2016; Keller et al. 2017). In these previous efforts, sev-
eral perceptual descriptors tested were hard to predict and these 
descriptors may have been difficult to evaluate by study volunteers 
or lack a strong physicochemical basis. Nevertheless, a natural lan-
guage processing approach could successfully predict perceptual 
descriptors across studies, suggesting that descriptions of olfactory 
perceptual content are likely structured and not totally subjective 
(Gutiérrez et al. 2018). These earlier studies create an underlying 
framework that points to the intriguing possibility that the per-
ceptual descriptions humans select to characterize odorants are 
associated with key physicochemical features, even those that 
are seemingly abstract and currently not well defined. Although 
prior structure–activity studies predate modern machine learning, 
indicating features enriched among chemicals with shared percep-
tual qualities (Rossiter 1996), some exceptions arise.

A few recent studies have modeled odor perception using large 
databases, training deep neural networks to predict perceptual de-
scriptors from chemical features (Sanchez-Lengeling et  al. 2019; 
Tran et al. 2019). These studies have suggested that many complex 
perceptual descriptors are predictable. The chemical representation 
or input in these studies undergoes modification, in which the pre-
dictive features are the weights of the neurons in the neural network, 
making them challenging to interpret. We have established a pipeline 
to clarify the physicochemical properties that best predict diverse 
perceptual descriptors and to rigorously test using different metrics 
and controls that ensure the machine-learning models are consistent 
with biological expectations. We find that chemical feature models 
can address many complex, biologically relevant tasks. As this sug-
gests the important or predictive features that we identify are a re-
source for further research, we finally annotate a large commercially 
available chemical database with predicted odor qualities. These 
predictions reveal enriched structural motifs that help interpret the 
machine-learning models.

Materials and Methods

Psychophysical data
Keller (2016) study
We used data from 55 general public volunteers (Keller and Vosshall 
2016) for external validation (Figures 1 and 2, Supplementary 
Figures 1–5). Due to limited diversity in the selection of odor de-
scriptors supplied by naive volunteers and evidence indicating ex-
perience with odor language improves the quality of perceptual data 
(Lawless 1984; Dubois and Rouby 2002; Olofsson and Gottfried 

2015), we primarily considered a sample of industry professionals 
as reported in the atlas of odor character profiles (Dravnieks 1985). 
Notably, the semantic descriptors (odor characters or perceptual de-
scriptors) were sparsely used in some cases among the general public 
volunteers, suggesting that averaged ratings for a given descriptor 
(odor character) might represent a very small proportion of the re-
spondents. This becomes particularly important for generating pre-
dictive models since missing data points (e.g., chemicals or odorants 
that are not rated by some participants) must be dealt with such 
as by averaging ratings for the nearest neighboring (k) odorants or 
filling-in with the median/mean rating across all odorants. Although 
these approaches are valid in predictive modeling, they are a signifi-
cant modification of the respondent data; the failure to provide a 
rating is a potentially important source of information. We main-
tained, as a result, the 0–100 scale for the general public volunteer 
data but converted ratings to a % usage metric instead. Dilution was 
not considered, averaging % usage over the different dilutions. In 
preliminary analyses, there was however some evidence that models 
might benefit from training on data from a single dilution. Similarly, 
a small number of replicates that were performed in this study were 
not included in the final training and testing data sets.

Although with the % usage each odorant is assigned numeric 
values more naturally, this modification was also in line with the 
Dravnieks (1985) study data. The % usage therefore provided a 
means to compare 2 sources that to a first approximation appear 
very different. Dravnieks (1985) also reports a percent applicability 
metric. The percent applicability is the sum of the ratings for a chem-
ical or odorant over all participants divided by the maximum pos-
sible sum. This was not used for our cross-study comparisons as 
ratings from an experienced participant panel might scale differently 
and the sample size between the 2 studies is very different. Because 
cross-study comparisons are not well defined, we opted for the sim-
plest possible metric, the % usage.

Atlas of odor character profiles, Dravnieks (1985)
Dravnieks (1985) summarizes odor profiles for 180 odorants, rep-
licates, and mixtures, with the latter not being used for predictions, 
from 507 industry professionals in total across 12 organizations. 
Each chemical was rated by between 120 and 140 participants. 
The participants scored a set of replicates, which were used to pro-
vide an index of discriminability for the data as the inverse of the 
squared correlation coefficient between replicates (RV). For this 
study, RV = 0.11. The scoring metric was on the range of 1–5 with 
1 being slightly and 5 being extremely relevant. Raw scores were 
subsequently processed into 2 numeric values summarizing the par-
ticipants’ responses. We only focused on the % usage; the fraction 
of participants providing any response, 1–5 because it is the sim-
plest metric to interpret and relate to other studies. The perceptual 

Software and data resources

Type Designation Source or reference Identifiers Additional information

Software, algorithm R 3.5.1 https://github.com/tidyverse/ggplot2 ggplot2 (R)
Software, algorithm R 3.5.1 https://github.com/igraph/igraph igraph (R)
Software, algorithm R 3.5.1 https://github.com/tgirke/ChemmineR ChemmineR (R)
Software, algorithm R 3.5.1 https://github.com/topepo/caret caret (R)
Data Keller (2016) https://doi.org/10.1186/s12868-016-0287-2
Data GoodScents http://www.thegoodscentscompany.com/index.html
Data DREAM https://github.com/dream-olfaction/ 

olfaction-prediction
407 Train, 69 Test chemical IDs for 

Keller (2016) data 
Data Dravnieks (1985) http://doi.org/10.1520/DS61-EB Data from the original 1985 edition
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descriptor (or character) set available for the Dravnieks (1985) study 
was extensive but empirically driven. Recommendations from the 
American Society for Testing and Materials (ASTM) sensory evalu-
ation committee winnowed an initial set of 800 possible odor char-
acters (perceptual descriptors) for sensory analyses down to 160. 
Prompted by additional research, this figure was later revised to 146 
relevant perceptual descriptors, a final set that addressed concerns 
in which clear perceptual differences could result in identical de-
scriptor usage from study participants. This final set of 146 percep-
tual descriptors and the percent usage was subsequently prepared for 
machine-learning analyses.

GoodScents test data
GoodScents is a database of 2000+ chemicals, containing basic phys-
icochemical information as well as perceptual descriptor labels, if 
available, from published reference materials. Since it is not possible 
to predict a descriptor for which there is no Dravnieks (1985) equiva-
lent, we had to define exclusionary criteria to properly evaluate the 
predictions. This included in addition to removing nonunique chemi-
cals those without descriptor labels matching or similar to Dravnieks 
(1985), leaving 2525 chemicals for test set validation. Examples of 
similar descriptors in GoodScents include “weedy” and “nutty,” 
which correspond with “crushed weeds,” and “walnut” and “peanut 
butter in Dravnieks (1985), respectively.” The 146 Dravnieks (1985) 
descriptor models assigned a probability score. Receiver operating 
characteristic (ROC) curves were subsequently computed using the 
observed descriptor labels for each of the 2525 chemicals. A chem-
ical described simply as “nutty,” for example, is expected to have 
high probabilities for “peanut butter” and “walnut,” but not for “or-
ange” and “chemical.” Cases where descriptors were correlated in 
Dravnieks (1985) (>0.85) were also defined as a set to avoid overly 
penalizing the assignment of redundant descriptors to new chemi-
cals. We identified earlier that models with this level of correlation 
are often interchangeable, with only a non-significant reduction in 
prediction performance. Namely, machine-learning assignment of 
“Chemical” to an odorant described as “Varnish” was not incor-
rect given the data. The ROC assesses that high probabilities are 
correctly assigned to the observed descriptors. When the machine-
learning models predict descriptors that are unlike those observed, 
the area under the ROC curve decreases. An independent t-test 
comparison was made between actual areas under the ROC curve 
(AUCs) and those using random probability scores.

Selecting optimally predictive chemical features
Optimizing chemical structures
Chemical features were computed with DRAGON 6 for Dravnieks 
(1985) (Figures 1A and 2A). Chemical structures were optimized 
and 3D coordinates computed with OMEGA. Molecular or chem-
ical features were precomputed and made publicly available for the 
DREAM study, and these data files were used as is for analysis of the 
55 public volunteers reported in the Keller’s (2016) study.

Chemical feature ranking and importance
Cross-validated recursive feature elimination
Recursive feature elimination (RFE) iteratively selects subsets of 
features to identify optimal sets. The algorithm is a “wrapper” and 
therefore relies on an additional algorithm to supply predictions and 
quantify importance. Often this is a decision tree such as random 
forest, which was used here, since the algorithm computes feature 
importance internally. This distinction between internal and external 
simply means that although any arbitrary algorithm can supply the 

prediction error—here, the error in predicting the % usage value—
many lack a well-defined method for quantifying feature import-
ance. Feature importance and ranking must, in these instances, be 
supplied externally such as by nonlinear regression models for each 
predictor and outcome compared with a constant.

Including cross-validation with the RFE partitions the training 
data into multiple folds. This step avoids biasing performance esti-
mates but results in lists of top predictors over the cross-validation 
folds such that importance of a predictor is based on a selection rate.

Random forest
Random forest is an extension of basic decision trees that overcomes 
the often-poor generalizability of these models by aggregating the 
predictions from multiple trees trained on bootstrap samples and dif-
ferent predictor sets, effectively limiting redundancy between trees. 
Rows that are excluded as part of bootstrapping process are used 
to estimate prediction performance on new data. This also provides 
a method for assigning importance to features through randomiza-
tion; the % increase in prediction error after randomizing a feature is 
accordingly the ranking metric that was used for tabulating chemical 
feature importance (shown in Supplementary File 1).

Selection bias
Selecting features or predictors on the same dataset used for cross 
validation results in models that have already “seen” possible parti-
tions of the data and therefore performance metrics will be biased. 
Selection bias (Ambroise and McLachlan 2002) was addressed by 
bootstrapping and cross-validation, which ensure some separation 
between predictor/feature selection and model-fitting/validation. In 
addition to these methods, we used hidden test sets and also showed 
that the models could be used to predict perceptual responses from 
a completely different experiment, removing methodological biases 
arising from odorant preparation and presentation or any unfore-
seen regularities that machine-learning algorithms could exploit but 
that are fundamentally task irrelevant for the analyst or researcher 
interested understanding rather than predicting.

Selecting optimal machine-learning algorithms
The support vector machine (SVM) with the radial basis function 
(RBF) kernel outperformed random forest, regularized linear models 
(ridge and lasso), and linear SVM, tuning over L1 versus L2 regu-
larization (Figure 1). However, gradient boosted decisions trees and 
tree ensembles such as random forest nevertheless approximated 
performance of RBF SVMs on the public volunteer data (Keller 
2016), which was used in part for the DREAM analysis, and in cer-
tain cases outperformed it. This emphasizes that the optimal algo-
rithm is context dependent. To ensure consistency in our analysis of 
different psychophysical data sources, we did not report the results 
in this manner, that is, fitting the best-performing algorithm each 
time. We instead aggregated multiple SVM models to improve gen-
eralizability. Algorithm selection and training was done using the R 
package, caret (classification and regression training) (Kuhn 2008; R 
Development Core Team 2016).

Cross-study predictions
For cross-study predictions, models were fit as shown in the 
Figure 1a pipeline with Dravnieks (1985) data (Figure 1 and 
Supplementary Table 2). Multiple SVM models were fit with 
slightly different chemical features and their predictions were ag-
gregated. This ensemble approach limits the tendency to overfit 
during the training phase.
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Figure 1.  Predicting perceptual descriptors from physicochemical features using machine learning. (a) Pipeline for predicting Dravnieks (1985) ratings (% Usage) 
for perceptual descriptors, an example is provided for the descriptor, “molasses.” The important chemical features are detected that predict “Molasses.” An SVM 
is fit, and the predictions are assessed by different methods such as the AUC from ROC plots. (b) Chemicals within the top 10% of ratings (% Usage) are labeled 
as “Active.” The AUC quantifies the relationship between sensitivity to the actives (chemicals in the top 10% ratings) versus false positives. Bars in the plot 
represent the average AUC from 3 models with different chemical features. The AUC is computed on chemicals excluded from training (30 times, 10-fold cross-
validation repeated 3 times). Significance (*) is determined by one-sided t-test, comparing the AUC to an identical model trained on shuffled “Active” labels. 
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Notably, chemicals do overlap between the 2 studies. Removing 
these chemicals (58) from Dravnieks (1985) significantly reduces the 
available training data. We instead removed the overlap from the Keller 
2016 data set, leaving 413 chemicals as a test set. Although theoretically 
all 146 perceptual descriptors could be assessed, the choice of “warm,” 
“sweaty,” “sweet,” and “chemical” depended on key differences in the 
perceptual descriptors available for the 2 studies, Keller (2016) and 
Dravnieks (1985). For instance, although Dravnieks (1985) used word 
strings in many cases such as “putrid, foul, decayed” to provide greater 
context, Keller 2016 opted for “decayed.” It is unclear what affect this 
difference might have and if it is nontrivial. The interpretation of the 
cross-study prediction becomes ambiguous as a result. Identically pre-
sented descriptors, like “chemical,” “warm,” “sweaty,” and “sweet” are 
well-defined cases for testing models across studies.

Network analyses and visualizations
Matrices for network
Chemical and perceptual descriptor relationships were modeled as 
bipartite graphs from an incidence matrix with perceptual descrip-
tors as rows and columns the combined, unique optimal chemical 
feature sets (Figure 2). The optimal feature sets are from iteratively 
fitting a random forest model on 100 different partitions of the 
Dravnieks (1985) training data. We ranked the features based on 
the random forest importance over the partitions. Several different 
perceptual descriptor–chemical feature matrices were assembled by 
varying the number of ranked features per descriptor (e.g., top 3, 5, 
10). Incidence matrices from the top 3, 5, or 10 chemical features are 
therefore identical except for the number of columns (unique chem-
ical features). Factor analysis was performed to reduce the number 
of perceptual descriptors for clarifying network plots as in Figure 2b. 
This was run using the factanal function in addition to functions in 
the nFactors (Raiche 2010) R package for factor extraction.

Specifically, values in the incidence matrices are 1 or 0; the op-
timal chemical features for each perceptual descriptor are 1, other-
wise 0. This amounts to a sparse matrix with the nonzero values, 
indicating relationships among the optimal physicochemical features 
and the perceptual descriptors. Collectively, these binary strings are 
likened to a set of combinatorial chemical feature codes for the 
Dravnieks (1985) perceptual descriptors. We subsequently separ-
ated the bipartite graph for clarity into its constituent, adjacency 
matrices, which are symmetrical, m × m and n × n, matrices, with m 
denoting rows (perceptual descriptors) and n the columns (chemical 
features) in the original incidence matrix. An adjacency matrix can 
be obtained by multiplying an incidence matrix by its transpose.

Clustering networks
Several methods are available for identifying modules, communi-
ties, or clusters in networks assembled from adjacency matrices. We 
tested several, selecting the Louvain algorithm based on its higher 
modularity score for Dravnieks (1985) data. Actual or observed 
network properties were in turn compared to 10 000 random net-
work simulations (Erdos-Renyi) of approximately identical size and 

density. The actual network properties differed from those generated 
through the random simulation.

Tools for network analysis and visualization
Graph analyses were done using the igraph package (Csardi and 
Nepusz 2006) in R, plots with ggplot2 (Wickham 2016), and func-
tions from the ggnetwork package for visualizing the networks.

eMolecule predictions and network representation
The eMolecule predictions are from Dravnieks descriptor models 
trained on the % usage (0–100 ratings), with detailed performance 
in Supplementary File 2, Supplementary Figure 1a, Supplementary 
Figure 2b, and Figure 3. The regression-based models predict or 
estimate these ratings for the eMolecules chemicals. Because the 
Dravnieks training set is not structurally exhaustive, we applied 
2 filters to further sort the predictions. These include (1) an atom 
pair fingerprint based on commonly occurring feature sets in bio-
logically active compounds (Cao et al. 2008) and (2) the % usage 
values of the chemicals at the top end of the distribution (% usage). 
Initially, the % usage values for the top chemicals (exemplars) per 
descriptor were applied to filter the predictions. For each descriptor, 
the reduced set was then compared with the physicochemical features 
of the exemplar chemicals using atom pair fingerprints. Since atom 
pairs are a coarse representation of complex 3D molecules, we ap-
plied a Tanimoto similarity coefficient threshold of 0.25. This ensured 
that predictions per descriptor displayed basic 2D features that over-
lapped with the Dravnieks exemplar chemicals, while exploring new 
structural patterns or motifs that are potentially missed in 2D com-
parisons. Notably, projecting from a small chemical training set to 
a larger chemical set potentially amplifies noise in the training data. 
We would therefore recommend the table of top chemical features 
in Supplementary File 1 if interested in a less exploratory resource.

Enriched substructures/cores
Enriched cores were analyzed using RDKit through Python (Van 
Rossum and Drake 1995; Landrum 2006) (Figure 4). The algorithm 
performs an exhaustive search for maximum a common substruc-
ture among a set of chemicals. In practice, larger sets often yield less 
substantive cores. To remedy this, the algorithm includes a threshold 
parameter that relaxes the proportion of chemicals containing the 
core. We used a threshold of 0.5, requiring that half of the chemicals 
from the top 10 contained the core.

Natural language processing (Supplementary File 3)
Though key differences exist across computational or machine-
learning studies of odor perception, it is particularly important to 
identify the challenges and strengths of different approaches as well 
as to provide an overview of the perceptual qualities that appear 
easy or difficult to predict. Natural language processing libraries, 
while not optimized for odor language, do offer an initial bridge 
between studies including diverse and different perceptual descrip-
tors. To that end, we used the spaCy library (Van Rossum and Drake 

The number of “Active” labels remains unchanged. Significance threshold set at P ≤ 0.05 after adjusting for false discovery rate. (c) Predicted versus observed 
% usage for select test chemicals. For clarity, only a selection of perceptual descriptors is shown. See Supplementary File 2 for additional detail and chemicals. 
(d) Dravnieks (1985) trained models of “Sweet,” “Warm,” “Sweaty,” and “Chemical” predict ratings for these same descriptors from a study of public volunteers 
for 413 test chemicals (Keller and Vosshall 2016). Cutoffs to convert the public volunteer data into actives are from the Dravnieks (1985) study (top 10% usage). 
Significance is determined by one-sided t-test, comparing the perceptual descriptor models with a nonidentical but top-performing Dravnieks (1985) model, 
“Varnish” over 100 bootstrap samples. Public volunteer perceptual data are averaged over dilution. (e) Average prediction performance (AUC) when assigning 
1–146 Dravnieks (1985) perceptual descriptor labels to 2525 test chemicals with known labels in the GoodScents database. Performance metrics other than 
classification (AUC) in Supplementary File 2. Formal definitions for the performance metrics and the SVM algorithm are provided in Materials and methods.
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Figure 2.  Building perceptual descriptor networks from few physicochemical features. (a) Pipeline summarizing methods for selecting the most important 
chemical features for predictions of Dravnieks (1985) perceptual descriptors, followed by the construction of networks that help visualize relationships among 
these descriptors when considering physicochemical information alone. (b) Assembled network from the top 5 chemical features per descriptor. Descriptors 
with shared top 5 chemical features are connected in the network. Similar perceptual descriptors are color-coded based on the Louvain algorithm. (c) Two sets 
of correlated descriptors are analyzed based on the chemical features that are important (among the top 5) for predicting them. (Top) Matrix 1: “fruity” descrip-
tors. (Bottom) Matrix 2: “sooty” descriptors. Louvain clustering (square color) shows the similar descriptors are separable into 2 subgroups. Filled-in squares, 
regardless of color, represent the importance of the labeled chemical feature. (d) Exemplar chemicals from the computationally inferred clusters.
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Figure 3.  Predicting and mining large commercially available chemical spaces. (a) The machine-learning models are used to predict perceptual descriptors from 
~440 000 compounds. (Top) predicted chemical counts are based on optimal thresholds from the ROC curves and structural similarity (atom pair similarity > 
0.25) to training actives. An optimal threshold is the point on the curve that minimizes false positives and maximizes true positives. (Bottom) Detailed validation 
for the models ordered with respect to the number of predicted chemicals. (b) A 2D representation of predictions for 15 hits for each perceptual descriptor (or 
all chemicals that exceed the % usage threshold for actives), with edges connecting compounds that are predicted for multiple descriptors. The newly predicted 
chemicals are indicated as unnamed red dots, and each descriptor as blue dots and labeled in rectangles. Predictions are from the SVM algorithm with a radial 
basis function (RBF) kernel. See Materials and methods for additional information.
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Figure 4.  Enriched chemical features among predictions. (a) Top predicted chemicals in eMolecules from the Figure 3 network are clustered and analyzed for 
common structural features (substructures or cores). These are highlighted (red) in images of representative chemicals from the predictions. The ID is the 
eMolecules identifier. Simple structural features are common among predicted chemicals, enabling basic comparisons between different perceptual descriptors 
based on chemical structure. Accordingly, this is an example of how a large network of predictions can offer additional insight. See Materials and methods for 
details on the maximum common substructure algorithm for identifying the enriched features.
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1995; Honnibal et al. 2020) and a convolutional neural network pre-
viously trained on GloVe Common Crawl (Pennington et al. 2014) 
and OntoNotes 5. The training set comprised more than 1 million 
English text words. The network uses the high dimensional training 
data to learn a lower dimensional space that represents syntactic and 
semantic associations in the training texts or documents. New words 
are vectors that are projected into this space, enabling estimates of 
semantic or syntactic features. Here, we compared pairs of different 
odor or perceptual descriptors, generating all pairwise similarities. 
The similarity coefficient for word vectors is the Cosine similarity. 
The inverse of the coefficient is a distance; the resulting distance 
matrix was hierarchically clustered using the Ward D2 method in R.

Support vector machine
Training the SVM involves identifying a set of parameters that optimize 
a cost function, where cost 1 and cost 0 correspond to training chemi-
cals labeled as “Active” and “Inactive,” respectively (Figure 1). θ  T is the 
scoring function or output of the support vector machine. If the output 
is ≥0, the prediction is “Active.” The function (ƒ) is a kernel function.

SVM cost = min
θ

C
m∑
i=1

y(i)cost1(θTf (i))

+ (1− y(i))cost0(θTf (i)) +
1
2

n∑
j=1

θ2j

�

The kernel determines the shape of the decision boundary between 
the active and inactive chemicals from the training set. The RBF or 
Gaussian kernel enables the learning of more complex, nonlinear 
boundaries. It is therefore well suited for problems in which the bio-
logically active chemicals cannot be properly classified as a linear 
function of physicochemical properties. This kernel computes the 
similarity for each chemical (x) and a set of landmarks (l), where 
σ  2 is a tunable parameter determined by the problem and data. The 
similarity with respect to these landmarks is used to predict new 
chemicals (“Active” vs. “Inactive”).

Gaussian kernel = exp

(
−
∥∥x− l(1)

∥∥2
2σ2

)
�

Model performance metrics
The AUC assesses the true positive rate (TPR or sensitivity) as a 
function of the false-positive rate (FPR or 1-specificity) while varying 
the probability threshold (T) for a label (Active/Inactive). If the com-
puted probability score (x) is greater than the threshold (T), the 
observation is assigned to the active class. Integrating the curve pro-
vides an estimate of classifier performance, with the top left corner 
giving an AUC of 1.0 denoting maximum sensitivity to detect all tar-
gets or actives in the data without any false positives. The theoretical 
random classifier is reported at AUC = 0.5.

TPR (T) =

∞̂

T

f1 (x) dx�

FPR(T) =

∞̂

T

f0 (x) dx�

where T is a variable threshold and x is a probability score.
However, we generated classifiers that are more authentic than 

theoretical random classification, shuffling the chemical feature 
values in the models and statistically comparing the mean AUCs 
across multiple partitions of the data. This controls against opti-
mally tuned algorithms predicting well simply because of specific 
predictor attributes (e.g., range, mean, median, and variance) or 
models that are of a specific size (number of predictors) performing 
well even with shuffled values. Additionally, biological data sets are 
often small, with stimuli or chemicals that—rather than random se-
lection—reflect research biases, possibly leading to optimistic val-
idation estimates without the proper controls. We used the AUC 
with classification-based training, such as to predict binary labels 
(Active/Inactive). For classification-based training we initially con-
verted the % usage into a binary label (Active/Inactive) using the 
top 10% of the distribution as the cutoff. To provide additional con-
text, we showed performance estimates varying the cutoff as well. 
The basis for a classification-based performance metric was the often 
top-heavy distribution of the % usage. It is for instance possibly not 
as relevant for models to accurately predict chemicals with minimal 
% usage. Rather, it is preferable for models to accurately predict 
whether a chemical will smell “Sweet” or not.

To provide further clarity, we also reported multiple performance 
metrics including the correlation between the predicted and observed 
% usage, the root mean squared error (RMSE), and mean absolute 
error (MAE): RMSE: It is the square root of the mean difference 
between predicted values and those observed (%  usage). It is the 
average prediction error on the same scale as the target or outcome 
being predicted. We supplied this metric because the correlation 
coefficient (R) is not always an accurate representation of model 
performance and classification of exemplar chemicals required an 
arbitrary cutoff (e.g., 90th percentile). We reported the correlation 
coefficient, R, between the predicted and observed % usage due to 
its previous use with human perceptual data. MAE: It is the mean of 
the absolute difference between predicted and observed (% usage). 
It thus assigns equal weight to all prediction errors, whether large 
or small.

RMSE =

Ã
n∑
i=1

(y− ŷ)2

N

MAE =
1
n

n∑
i=1

|y− ŷ|,

where, ŷ = predicted and y = observed

Sensitivity =
TP

TP+ FN
,

where, TP = true positive and FN = false negative

Specif icity =
TN

TN+ FP
,

where, TN = true negative and FP = false positive

�

Results

To better clarify the physicochemical basis of diverse perceptual de-
scriptors, we designed a pipeline that begins with the identification 
of chemical features that contribute most to perceptual descriptors, 
followed by training machine-learning models to predict percepts 
from these features and evaluating their predictions (Figure 1a, 
Materials and methods). We used perceptual data from 2 human 
studies, Dravnieks (1985) and Keller (2016), conducted at different 
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times and with different participant demographics (Dravnieks 
1985; Keller and Vosshall 2016). In the study by Dravnieks (1985), 
fragrance industry professionals rated 137 individual volatile 
chemicals for 146 different odor qualities (perceptual descrip-
tors). We identified ~30 predictive physicochemical features (from 
DRAGON) for each of these perceptual descriptors (Supplementary 
File 1) (see Materials and methods for details). Machine-learning 
models that were trained with the physicochemical features suc-
cessfully predicted most of the perceptual descriptors as seen by 
the computational validation (Figure 1b and Supplementary Figure 
1) (average area under curve [AUC] = 0.81, average shuffle AUC 
= 0.62; t = 24.17, P < 10−55; top 50 models average AUC = 0.90, 
average shuffle AUC =0.62; t = 55.54, P < 10–75). We also observed 
that altering the general classification cutoff from the top 10% 
usage to the top 15% or 25% changes the AUC value determined 
for different percepts (Supplementary Table 1). Specifically, of note 
is the increase in performance as the cutoff is lowered, suggesting 
these descriptors in the study data set have fewer high scoring 
(% usage) examples for training and the high scoring chemicals may 
not be as physicochemically distinct as lower scoring (%  usage) 
chemicals. To remove bias because of differences in the score dis-
tribution, we next evaluated other metrics for the validation such 
as RMSE, MAE, and correlation between predicted and observed 
% usage (R) (Supplementary File 2; see details in Materials and 
methods, “Model performance metrics”). Since each chemical has 
a complex perceptual profile, we analyzed the correlation between 
predicted and observed % usage over the validation for the full (146 
descriptor set), which suggested good results (Supplementary Figure 
1a). Next, for a set of hidden test chemicals, the predicted olfac-
tory profile over all 146 perceptual descriptors also correlated well 
with the known human ratings (average r = 0.72; best predicted 
chemical: r = 0.86; worst predicted chemical: r = 0.67) (Figure 1c; 
Supplementary Figure 1).

The study by Dravnieks (1985) used experienced human raters, 
and to generalize the utility of our approach, we next applied it to 
the more recent study by Keller (2016) of general public volunteers 
(Keller and Vosshall 2016). As with the study by Dravnieks (1985), 
perceptual descriptors for a set of 69 hidden test chemicals (Keller 
et al. 2017) were also well predicted from physicochemical features 
(Supplementary Figure 1b) or with multiple train/test sets from all 
476 chemicals (Supplementary Figure 1c).

The 2 studies, though differing significantly in methodology, 
evaluated a small number of identical perceptual descriptors. It was 
therefore possible to test whether models from the 1985 study could 
predict equivalent perceptual descriptors in the 2016 study (cross-
study). Prior work has performed this analysis on a small number 
of overlapping chemicals using an approach involving semantic 
similarity and chemical features (Gutiérrez et al. 2018). We focused 
on 413 nonoverlapping chemicals and more traditional modeling 
methods to evaluate across studies. Models for “Sweet,” Warm,” 
“Sweaty,” and “Chemical” trained on the study by Dravnieks (1985) 
were successful at classifying the 413 chemicals unique to the study 
by Keller (2016) (Dravnieks 1985; Keller and Vosshall 2016) (Figure 
1d) (average cross-study AUC = 0.73  ± 0.07, maximum AUC = 
0.82 ± 0.03 for “Sweet”). As a control, we compared the cross-study 
predictions with the Dravnieks (1985) model for a distinct percept, 
“Varnish,” which achieved good accuracy in Figure 1b and is similar 
to “Chemical” but expected to differ from the rest. Consistent with 
expectation, the overall average AUC using the Dravnieks (1985) 
“Varnish” model cross-study was 0.41 ± 0.12. When we trained the 
Dravnieks (1985) models on randomly shuffled labels before the 

cross-study predictions, the overall average AUC was 0.52 ± 0.07 
(Supplementary Table 2. These results suggest that identical percep-
tual descriptors across studies are predictable from a set of physico-
chemical features, despite differences in study sample demographics 
and odor diversity.

We next analyzed if the descriptors within each study could be 
predicted equally well by a different descriptor model with good 
classification accuracy. For the study by Keller (2016), “Bakery,” 
which is similar to the many food-related descriptors in the study 
but differs from the rest, did not classify the 69 test chemicals as 
well as the percept-specific models (Supplementary Figure 2a). Of 
the 146 Dravnieks (1985) study descriptors, ~96% were better 
predicted by the percept-specific model vs “Varnish” (average 
Varnish AUC = 0.51; t = 21.65, P < 10−59) (Supplementary Figure 
2b). However, the “Varnish” model was indistinguishable from 
“Chemical,” “Paint,” and “Etherish,” implying chemical features 
are redundant in some cases. As this also suggested some descrip-
tors in an arbitrarily large descriptor space might be predicted 
equally well by semi or even unrelated chemical feature models, 
we studied this exhaustively (Supplementary Figure 3a). Overall, 
predictions with the actual descriptor model were often statistic-
ally better, even for some seemingly similar descriptors. However, 
this is not always the case, suggesting some descriptors may simply 
lack quality exemplar chemicals. We also tested additional, alterna-
tive methods to evaluate the descriptor models, with similar results 
summarized in Supplementary File 2.

Apart from these 2 semiquantitative psychophysical studies 
(Dravnieks (1985; Keller 2016), a large amount of perceptual data is 
available as text at various databases, some using identical or similar 
perceptual descriptors. Although these databases are not quantita-
tive or methodical, we tested each of our 146 Dravnieks (1985) per-
ceptual descriptor models on a unique set of 2525 chemicals from 
one such database maintained by the GoodScents company. The pre-
dicted perceptual scores of each chemical were evaluated against the 
known textual data using ROC analysis (Materials and methods). 
Although this task differed dramatically from previous test data sets, 
on average, the predictions compared favorably to the observed per-
cepts (AUC = 0.72, t = 48.53, P < 10–15) (Figure 1e). Collectively, 
these examples of predictive success within and across data sets es-
tablish that many perceptual descriptors, even those that are seem-
ingly abstract, have a physicochemical basis that can be identified.

To get an overview of the physicochemical basis of odor percep-
tion, we created network representations of the relationship between 
the percepts and the most predictive chemical features (Bullmore and 
Sporns 2009; Meunier et al. 2010; Koulakov et al. 2011; Zhou et al. 
2018). For example, we expected that similar descriptors (“Fruity, 
Citrus,” “Lemon,” “Grapefruit”) were best predicted by similar 
chemical features and they would cluster together in the network 
(Figure 2a). Initially, we performed simple hierarchical clustering to 
compare the distances between the perceptual descriptors based on 
the % usage (Supplementary Figure 4a) and then based on chem-
ical feature sets in the machine-learning models for comparison. 
Although some chemical features were selected for multiple de-
scriptor models, resulting in unconventional pairings in the hierarch-
ical tree relative to perceptual ratings, we observed many similarities 
(Supplementary Figure 4b).

We next turned our attention to the network-based visualiza-
tions, reducing the chemical features down to the top 3 for 93 of 
the most distinct perceptual descriptors in the study by Dravnieks 
(1985) (117 features in total). Despite the limited information, 
distinct clusters were detectable. In general, networks using more 
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chemical features (top 5 or 10) were better connected (Figure 2b, 
Supplementary Figure 5a). Interestingly, these networks relate well 
to those assembled only from human participant ratings rather 
than physicochemical information (Castro et al. 2013). Taken to-
gether, these analyses suggested that perceptual descriptors with 
highly correlated % usage (e.g., descriptors that are fruit-like) may 
be subtly different in terms of the most important or predictive 
chemical features.

The human olfactory system discriminates similar smelling 
chemicals and does so presumably by detecting minor differences 
in key physicochemical features using an array of odorant re-
ceptors. To understand how a machine-learning algorithm might 
achieve such discrimination, we selected 2 groups of closely cor-
related perceptual descriptors, fruit-like and soot-like, and per-
formed a network analysis as before. As expected, many top 
physicochemical features were shared among these similar de-
scriptors, and yet separate subclusters were present (Figure 2c, 
top and bottom). Representative compounds with descriptors 
such as “Grape Juice” and “Peach, Fruit” are subtly different from 
each other, as are ones for “Sooty” and “Tar” (Figure 2d). When 
examining these differences in physicochemical features, it is evi-
dent how slight variations in structurally related chemicals could 
result in distinct perceptual responses. We also observed this in 
an additional analysis (Supplementary Figure 5b). This suggests 
that physicochemical information in machine-learning models can 
address a complex challenge, similar to the biologically relevant 
discriminatory task.

An analysis of the chemical features selected for all the percep-
tual models suggested that the 3D structure of a chemical contrib-
uted significantly to predictions of odor perception, particularly the 
3D-MoRSE (Schuur et  al. 1996) and GETAWAY (Consonni et  al. 
2002) chemical features (DRAGON), which are 3D representations 
weighted by physicochemical properties that are possibly without 
precise structural interpretations (Supplementary Figure 5c). Simpler 
2D features and functional group counts were less important but 
still among the top 10 features for some of the perceptual descriptors 
(Supplementary Figure 5c).

Only a miniscule portion of the odor–chemical space has been 
evaluated for perceptual information, and this in part reflects the 
low throughput and high cost of human studies. One approach to 
overcome this is to extend small experimental data sets to large, 
unexplored chemical spaces. Subsequently, we predicted the 146 
Dravnieks (1985) study perceptual descriptors for a ~440 000 
chemical library (Boyle, Guda, et  al. 2016; Boyle, McInally et  al. 
2016) (Figure 3a, top and bottom). We evaluated ~68 million de-
scriptor–chemical combinations and predicted numerous (hundreds 
to thousands) new chemicals that smell like each descriptor. These 
chemicals represent a massive expansion (>3000 times) of the pre-
viously known chemical space with perceptual descriptors, which is 
likely to cover a substantial fraction of putative volatile chemicals 
with odorant properties. Ultimately, the predictions allowed us to 
create, for the first time, a comprehensive chemical space of all 146 
Dravnieks (1985) perceptual descriptors.

Visualizing this massive chemical space in a 2D image is diffi-
cult, so we represented only a fraction of the top predictions in the 
form of a network (Figure 3b). We next clustered similar perceptual 
descriptors, highlighting the frequently occurring chemical features 
among the top predictions. Though the machine-learning models in-
corporate potentially abstract chemical features, this type of analysis 
can help visualize structural features that may contribute to a certain 
percept (Figure 4).

Discussion

In this study, we provided a comprehensive analysis of odor percep-
tion prediction from physicochemical features of volatile chemicals 
and have supplied important groundwork to understand optimal 
methods, metrics, and approaches in modeling diverse perceptual 
descriptors. We do so with an additional focus on transparency and 
interpretability.

Of note is the finding that most perceptual descriptors are best 
predicted by chemical features that describe 3D geometries. The 
value of 3D information was anticipated however when considering 
structurally similar odorants share many 2D features. To successfully 
discriminate odorant percepts, machine-learning models utilize add-
itional physicochemical properties, particularly 3D shape. In data 
sets with an arbitrarily large number of perceptual descriptors, the 
important chemical features could be redundant and cross-descriptor 
predictions overlap. However, we found that, although important 
chemical features overlap, the set of descriptors for a percept and 
the models themselves were indeed largely distinct. This would be 
consistent with evidence that perceptual descriptors appear highly 
structured and are not arbitrary (Gutiérrez et al. 2018).

Although caution is required in interpreting results from the 
Dravnieks (1985) or Keller (2016) data sets, which are small samples 
by typical machine-learning standards, our validations and control 
analyses establish that they are nevertheless rich sources of infor-
mation for uncovering structure–odor percept relationships. The 
generalizability of physicochemical feature-based models across the 
differing sample demographics and the mostly distinct odor panels is 
further evidence. To that end, we have ultimately outlined a simple 
pipeline that can be applied to facilitate data-driven theories about 
the human olfactory perceptual space and its physicochemical ori-
gins on a considerably larger scale.

A handful of recent studies have used a variety of different com-
putational approaches analyzing similar sets of perceptual study data 
(Keller et  al. 2017; Gutiérrez et  al. 2018; Nozaki and Nakamoto 
2018; Sanchez-Lengeling et  al. 2019). A  direct comparison across 
these studies is somewhat limited due to differences in training and 
evaluation chemicals, metrics used, as well as differences in data 
processing. Although this study differs in several significant ways to 
others, we have attempted to place the results in context of diverse 
odor perception prediction efforts in a tabular form which shows the 
benefits of each approach (Supplementary File 3). To evaluate gener-
alizability across different studies, we also expanded our analyses on 
cross-study validations from 2 separate sources, where training and 
testing are performed on data from different psychophysics studies 
(Figure 1d and e). These results suggested that models trained on the 
Dravnieks data could be successfully adapted to predict percepts of 
chemicals in the Keller study and a very different, nonexperimental 
data set in GoodScents. Although the size of the training set directly 
impacts success, and models trained on more data perform better, 
we find that the validation rates obtained in this study are quite 
good relative to the size of the Dravnieks training data. Some of 
the previous modeling efforts relied on open-source chemical feature 
representations including e-Dragon, a free web interface to an early 
version of Dragon and Mordred/RDKit. Analysis here used propri-
etary geometry optimization tools such as OMEGA alongside the 
full version of Dragon. When we compared different feature repre-
sentations, it is evident that there are performance gains and losses 
depending on the perceptual descriptor set size (Supplementary 
File 3). Although there is no optimal approach, the tools used in 
this study appear to improve predictions, particularly when bench-
marking using the same database, such as within the Keller 2016 
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data; that is, training (407) and testing (69) on chemicals from the 
study by Keller (2016) (Supplementary File 3). These comparisons 
across various modeling efforts with multiple performance metrics 
provide some insight into the top selected perceptual descriptors and 
their predictability for each perceptual descriptor.

The chemical features we report for the Dravnieks (1985) per-
ceptual descriptors are potentially a valuable resource and will likely 
benefit researchers in identifying new chemicals that smell a specific 
way. Predicted compounds from the large computational screen are 
a rich source of information about the potential human olfactory 
chemical space. By applying machine learning alongside traditional 
chemoinformatic tools, we suggest it is now possible to extrapolate 
from the quality perceptual study data to large chemical spaces. We 
therefore anticipate that this study will provide a powerful approach 
and resource for the discovery of new flavors and fragrances.

Supplementary material
Supplementary data are available at Chemical Senses online.

Supplementary Figure 1. a) Average correlation (R) between the predicted 
and observed % usage for the full set of perceptual descriptors over cross val-
idation. Dravnieks (1985) study chemicals (x-axis) are abbreviated as the CAS 
identifier. b) Evaluation of chemical (DRAGON) feature models trained on the 
Keller 2016 study data. Models classify 69 test chemicals (used in the DREAM 
analysis) as smelling like a given descriptor (top 10% Usage). These chem-
icals were excluded from training and chemical feature selection. The area 
under the ROC curve (AUC) compares predictions to the data observed from 
the general public volunteers in that study. Chance performance is defined by 
training models identically but on mislabeled chemicals (shuffle). Error is the 
standard deviation over 100 bootstrap samples. c) A similar analysis is done 
using an alternative validation method where all 476 chemicals in the Keller 
2016 study are repeatedly divided into training and testing chemical sets (10-
fold cross-validation, repeated 3 times). This covers more diversity than the 
69 test chemicals. Chemical features for these models were selected using a 
subset of the data to minimize biased validation. The predictions are aggre-
gated from the support vector machine (SVM) and regularized random forest 
algorithms. Additional information on AUC calculation and its interpretation 
are in Materials and Methods. Chemical feature selection methods and biases 
that affect validation are also defined in Materials and Methods. Source data 
supplied in Supplementary Figure 1.

Supplementary Figure 2. a) Area under the ROC curve (AUC) for classi-
fying the top 10% of usage on 69 test chemicals with chemical (DRAGON) 
features across perceptual descriptors from the 55 Keller 2016 study par-
ticipants, averaging over dilution. The 69 test chemicals are as reported in 
the DREAM analysis (Keller et al. 2017). AUCs computed from aggregated 
scores of a RBF SVM and a regularized random forest. Performance of each 
perceptual descriptor model is plotted alongside performance if replacing the 
predictions with the “Bakery” model. Chemical features selected and models 
fit on 407 training chemicals. Error (standard deviation) is over 100 boot-
strap samples of the 69 test chemicals. b) Classification (AUC) of top 10% of 
usage for the 146 Dravnieks (1985) perceptual descriptors descriptor models 
(teal dots) compared to predictions using a top performing “Varnish” (purple 
dots) model. Perceptual descriptors colored in purple failed to outperform 
“Varnish,” p > .05, adjusting for FDR (Benjamini-Hochberg). Plotted AUCs re-
flect the average of 3 RBF SVM models using different chemical features from 
a pool of ~70 over 30 cross validation folds (10- fold CV repeated 3 times) 
(RBF: Radial Basis Function; SVM: Support Vector Machine; FDR: False 
Discovery Rate). See Supplementary Figure 3 for exhaustive comparisons.

Supplementary Figure 3. a) Dravnieks (1985) study prediction perform-
ance over the cross validation where the percent usage of each perceptual 
descriptor is predicted by the models for the other descriptors. The color is 
the p value adjusted for FDR (T-test). Descriptor labels are colored (red) to 
distinguish the models that are of a lower quality rather than perceptual re-
dundancy. These perceptual descriptors may fail for many reasons but notably 
most are not well represented among Dravnieks (1985) study chemicals (e.g. 
lack exemplars for classification training).

Supplementary Figure 4. a) Hierarchical clustering of the Dravnieks (1985) 
study data by % usage. The cluster (colors) number is determined by the gap 
statistic over bootstrap samples. The distance is Euclidean. b) Hierarchical 
clustering is instead performed based on chemical feature sets appearing in the 
machine learning models. The distance is 1-Jaccard index, where the Jaccard 
index here indicates the similarity of binary strings (1,0) specifying if a chem-
ical feature is or is not in the perceptual descriptor model.

Supplementary Figure 5. a) The 10 most important chemical (DRAGON) 
features for accurate predictions of perception (% usage) are used to build 
a network representation that shows relationships among the perceptual de-
scriptors in terms of their prospective physicochemical similarity. Connectivity 
in the network signifies shared chemical features among 93 distinct percep-
tual descriptors and is used to infer clusters of similar perceptual descriptors 
according to the Louvain algorithm. The large number of features leads to 
a densely connected network but clusters detected. b) Left, discriminating 
top chemicals that smell like “cherry” versus “tar,” according to Dravnieks 
(1985) study respondents. The discrimination success is quantified by the 
average AUC across 30 cross validation folds (10-fold CV repeated 3 times) 
for models comprised of 1, 2, and 3 principal components (PC 1–3) that op-
timally retain information in the combined top 10 chemical (DRAGON) fea-
tures (20 total). Error bars reflect the standard error. Note the 3 component 
model provides perfect classification. Right, exemplar chemicals for “cherry 
(berry)” and “tar” that are structurally similar but with subtly distinct chem-
ical features. c) Counts of the chemical (DRAGON) features selected in bins 
from the top 1–10 (x–axis) for 146 perceptual descriptors with respect to the 
broad categories (y-axis) the features fall into.

Supplementary Table 1. Related to Figure 1b. The average AUC is shown 
for varying classification cutoffs. The % usage is transformed into active and 
inactive labels according to the top end of the % usage distribution (Top 10, 
15, and 25), which changes the number of active and inactive chemicals.

Supplementary Table 2. Cross-Study classification performance. Dravnieks 
(1985) models predict the same perceptual descriptor in the Keller 2016 study 
for 413 chemicals unique to the study. The area under the curve (AUC) is 
averaged over 100 bootstrap samples. The perceptual descriptor is the model 
used for predictions. Each descriptor is appended with “Shuffle” or “Varnish,” 
showing the performance when the Dravnieks (1985) study model is trained 
on shuffled labels for exemplar chemicals or, alternatively, the Dravnieks 
(1985) “Varnish” model.
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